

## A417 Missing Link TR010056

6.4 Environmental Statement Appendix 14.1 Greenhouse Gas Assessment Assumptions, Methodology and Emissions Factors

Planning Act 2008

APFP Regulation 5(2)(a) Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

Volume 6

May 2021

Infrastructure Planning

Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

## A417 Missing Link

## Development Consent Order 202[x]

#### 6.4 Environmental Statement Appendix 14.1 Greenhouse Gas Assessment Assumptions, Methodology and Emissions Factors.

| Regulation Number:             | 5(2)(a)           |  |  |  |
|--------------------------------|-------------------|--|--|--|
| Planning Inspectorate          | TR010056          |  |  |  |
| Scheme Reference               |                   |  |  |  |
| Application Document Reference | 6.4               |  |  |  |
| Author:                        | A417 Missing Link |  |  |  |

| Version | Date     | Status of Version      |
|---------|----------|------------------------|
| C01     | May 2021 | Application Submission |

# **Table of Contents**

|     |                                 |                                            | Pages |
|-----|---------------------------------|--------------------------------------------|-------|
| 1   | Greenhouse gas assessment assun | nptions, methodology and emissions factors | i     |
|     | 1.1 Carbon assessment supportin | g information                              | i     |
|     |                                 |                                            |       |
|     |                                 |                                            |       |
| Tal | able of Tables                  |                                            |       |

### Table 1-1Greenhouse gas assessment assumptionsii

### 1 Greenhouse gas assessment assumptions, methodology and emissions factors

### **1.1** Carbon assessment supporting information

1.1.1 This appendix presents all assumptions made in the quantification of the capital carbon assessment, presented in ES Chapter 14 Climate of the Environmental Statement (ES) (Document Reference 6.2).

#### Table 1-1 Greenhouse gas assessment assumptions

| Item<br>Category | Location   | Description                                                                                                                    | Units          | Quantity | Assumptions                                                                                                                                                                                                   |
|------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pavements        | Mainline   | Pavements - Sub-base type 1<br>unbound mixture: in carriageway,<br>hardshoulder and hardstrip                                  | m <sup>2</sup> | 134,025  | 1. Assume the subbase type 1 is equivalent to natural aggregate, 2. Assume the density of subbase type 1 is 2000 Kg/m <sup>3</sup> 3. 330mm thickness. = 88,456.50 tonnes                                     |
| Pavements        | Mainline   | Pavements - Base - Dense<br>bitumen macadam (DBM50): In<br>carriageway hardshoulder and<br>hardstrip                           | m²             | 134,025  | 1. Assume the density of dense bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume the dense bitumen macadam has the same carbon factor as Asphalt, 6% binder content 3. 220mm thickness. = 67,816.65 tonnes  |
| Pavements        | Mainline   | Pavements - Binder course -<br>Dense bitumen macadam<br>(DBM50) in carriageway<br>hardshoulder and hardstrip                   | m <sup>2</sup> | 134,025  | 1. Assume the density of dense bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume the dense bitumen macadam has the same carbon factor as Asphalt, 6% binder content 3. 60mm thickness. = 18,495.45 tonnes   |
| Pavements        | Mainline   | Pavements - Surface course -<br>Close graded macadam - Thin - in<br>carriageway, hardshoulder and<br>hardstrip 10mm agg. 60PSV | m <sup>2</sup> | 134,025  | 1. Assume the density of close bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume that close graded macadam has the same carbon factor as Asphalt, 7% binder content 3. 40mm thickness. =12,330.30 tonnes    |
| Pavements        | Side roads | Pavements - Sub-base type 1<br>unbound mixture: in carriageway,<br>hardshoulder and hardstrip                                  | m²             | 68,272   | 1. Assume the subbase type 1 is equivalent to natural aggregate, 2. Assume the density of subbase type 1 is 2000 Kg/m <sup>3</sup> 3. 420mm thickness. = 57,348.48 tonnes                                     |
| Pavements        | Side roads | Pavements - Base - Dense<br>bitumen macadam (DBM50): In<br>carriageway hardshoulder and<br>hardstrip                           | m²             | 68,272   | 1. Assume the density of dense bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume the dense bitumen macadam has the same carbon factor as Asphalt, 6% binder content. 3. 160mm thickness. = 25,124.10 tonnes |
| Pavements        | Side roads | Pavements - Binder course -<br>Dense bitumen macadam<br>(DBM50) in carriageway<br>hardshoulder and hardstrip                   | m²             | 68,272   | 1. Assume the density of dense bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume the dense bitumen macadam has the same carbon factor as Asphalt, 6% binder content. 3. 60mm thickness. =9,421.54 tonnes    |
| Pavements        | Side roads | Pavements - Surface course -<br>Close graded macadam - Thin - in<br>carriageway, hardshoulder and<br>hardstrip 10mm agg. 60PSV | m <sup>2</sup> | 68,272   | 1. Assume the density of close bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume that close graded macadam has the same carbon factor as Asphalt, 7% binder content. 3. 40mm thickness. = $6,281.02$ tonnes |

| Item<br>Category | Location                          | Description                                                                                                                                           | Units          | Quantity  | Assumptions                                                                                                                                                                                                                                                                                                                                   |
|------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pavements        | Central reserve                   | Pavements - Sub-base type 1<br>unbound mixture: in carriageway,<br>hardshoulder and hardstrip                                                         | m <sup>2</sup> | 30,710    | 1. Assume the subbase type 1 is equivalent to natural aggregate, 2. Assume the density of subbase type 1 is 2000 Kg/m <sup>3</sup> , 3. 400mm thickness. = 24,568 tonnes                                                                                                                                                                      |
| Pavements        | Central<br>reserve                | Pavements - Binder course -<br>Dense bitumen macadam<br>(DBM50) in carriageway<br>hardshoulder and hardstrip                                          | m²             | 30,710    | 1. Assume the density of dense bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume the dense bitumen macadam has the same carbon factor as Asphalt, 6% binder content, 3. 60mm thickness. = 4,237.98 tonnes                                                                                                                                   |
| Pavements        | Central reserve                   | Pavements - Surface course -<br>Close graded macadam - Thin - in<br>carriageway, hardshoulder and<br>hardstrip 10mm agg. 60PSV                        | m²             | 30,710    | 1. Assume the density of close bitumen macadam is 2300 Kg/m <sup>3</sup> 2. Assume that close graded macadam has the same carbon factor as Asphalt, 7% binder content, 3. 40mm thickness. =2,852.32 tonnes                                                                                                                                    |
| Barriers         | Central<br>reserve                | Pre-cast concrete step barrier                                                                                                                        | m              | 6,300     | Data provided via email 29/10/2019. Carbon factor taken<br>from the ICE V3: Concrete> Precast concrete beams and<br>columns - steel reinforced with 100kg world average steel<br>per m <sup>3</sup> . Volume of concrete step barrier taken to be 0.5m <sup>3</sup><br>per metre with density of 2.4tonnes per m <sup>3</sup> . = 7,560tonnes |
| Barriers         | Non-central reserve               | Road restraint system/safety<br>barrier                                                                                                               | m              | 8,700     | 1. Assume Steel RRS barrier, single sided - data provided via email 29/10/19. Carbon factor taken from Highways England carbon tool. = 193.2 tonnes                                                                                                                                                                                           |
| Barriers         |                                   | Fencing - Environmental barriers<br>(absorptive and reflective) -<br>Environmental/ Noise barriers; all<br>types - including foundations<br>2.0m high | m              | 17,844.00 | Assume fencing is a type of Timber noise barrier Highways<br>England Carbon tool: Fencing> Noise barrier> Timber<br>barrier 2m. Weight taken to be 33kg/m <sup>2</sup> (density 0.09) =<br>1,177.70tonnes                                                                                                                                     |
| Fencing          |                                   |                                                                                                                                                       | m              | 20,063.00 | Assume a type of steel/wire/chain fence (includes posts)<br>Highways England Carbon tool: Steel/wire/chain fence.<br>Weight of steel per metre estimate from supplier for a 1.8m<br>high chain link fence and steel post to be 3.8kg. =<br>76.24tonnes                                                                                        |
| Culvert          | Tributary of<br>Norman's<br>Brook | Extension/replacement of existing culvert under widened A417, 600mm diam, 70m long                                                                    | m              | 70.00     | Assume the carbon factor for precast concrete culvert is<br>equivalent to Precast concrete circular pipework, with<br>600mm diam. Factor from Highways England Carbon tool:<br>Drainage>Precast concrete circular pipework>600mm<br>diameter. = 34.16tonnes                                                                                   |

| Item<br>Category | Location                                   | Description                          | Units          | Quantity | Assumptions                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|--------------------------------------------|--------------------------------------|----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Culvert          | Tributary of<br>Norman's<br>Brook          | Culvert headwall                     | m <sup>3</sup> | 11.44    | Assume volume of concrete in each headwall is 5.72m <sup>3</sup><br>(see drawings tab), Assume 1.5% of the concrete volume is<br>steel reinforcement. Assume density of concrete is<br>2400kg/m <sup>3</sup> . Assume the density of reinforcement is<br>7850kg/m <sup>3</sup> . Concrete factor - Concrete>C32/40>0% (Using<br>CEM1) Steel factor - Steel>bar & rod = 1.35t Steel & 27.04t<br>Concrete |
| Culvert          | Tributary of<br>Norman's<br>Brook          | Culvert backfill                     | m <sup>3</sup> | 6.40     | Factor from Highways England Carbon tool: Bulk materials>fil, aggregate and sand>general mixture. Assume density of 2000kg/m <sup>3</sup>                                                                                                                                                                                                                                                               |
| Culvert          | Dry valley<br>under A417                   | New culvert 900mm diam, 90 m<br>long | m              | 90.00    | Assume the carbon factor for precast concrete culvert is<br>equivalent to Precast concrete circular pipework, with<br>900mm diam. Factor from Highways England Carbon tool:<br>Drainage>Precast concrete circular pipework>900mm<br>diameter                                                                                                                                                            |
| Culvert          | Dry valley<br>under A417                   | Culvert Headwall                     | m <sup>3</sup> | 11.44    | Assume volume of concrete in each headwall is 5.72m <sup>3</sup><br>(see drawings tab), Assume 1.5% of the concrete volume is<br>steel reinforcement. Assume density of concrete is<br>2400kg/m <sup>3</sup> . Assume the density of reinforcement is<br>7850kg/m <sup>3</sup> . Concrete factor - Concrete>C32/40>0% (Using<br>CEM1) Steel factor - Steel>bar & rod = 1.35t Steel & 27.04t<br>Concrete |
| Culvert          | Dry valley<br>under A417                   | Culvert backfill                     | m <sup>3</sup> | 6.40     | Factor from Highways England Carbon tool: Bulk materials>fil, aggregate and sand>general mixture. Assume density of 2000kg/m <sup>3</sup>                                                                                                                                                                                                                                                               |
| Culvert          | Dry valley<br>under Shab<br>Hill slip road | New culvert 900mm diam, 85 m<br>long | m              | 85.00    | Assume the carbon factor for precast concrete culvert is<br>equivalent to Precast concrete circular pipework, with<br>900mm diam. Factor from Highways England Carbon tool:<br>Drainage>Precast concrete circular pipework>900mm<br>diameter                                                                                                                                                            |
| Culvert          | Dry valley<br>under Shab<br>Hill slip road | Culvert Headwall                     | m <sup>3</sup> | 11.44    | Assume volume of concrete in each headwall is 5.72m <sup>3</sup><br>(see drawings tab), Assume 1.5% of the concrete volume is<br>steel reinforcement. Assume density of concrete is<br>2400kg/m <sup>3</sup> . Assume the density of reinforcement is<br>7850kg/m <sup>3</sup> . Concrete factor - Concrete>C32/40>0% (Using                                                                            |

| Item<br>Category  | Location                                   | Description                         | Units          | Quantity | Assumptions                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|--------------------------------------------|-------------------------------------|----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                            |                                     |                |          | CEM1) Steel factor - Steel>bar & rod = 1.35t Steel & 27.04t<br>Concrete                                                                                                                                                                                                                                                                                                                                 |
| Culvert           | Dry valley<br>under Shab<br>Hill slip road | Culvert backfill                    |                | 6.40     | Factor from Highways England Carbon tool: Bulk materials>fil, aggregate and sand>general mixture. Assume density of 2000kg/m <sup>3</sup>                                                                                                                                                                                                                                                               |
| Culvert           | Dry valley<br>under A417                   | New culvert 750mm diam, 40m<br>long | m              | 40.00    | Assume the carbon factor for precast concrete culvert is<br>equivalent to Precast concrete circular pipework, with<br>750mm diam. Factor from HIGHWAYS ENGLAND Carbon<br>tool: Drainage>Precast concrete circular pipework>900mm<br>diameter (rounded up to nearest available factor)                                                                                                                   |
| Culvert           | Dry valley<br>under A417                   | Culvert Headwall                    | m <sup>3</sup> | 11.44    | Assume volume of concrete in each headwall is 5.72m <sup>3</sup><br>(see drawings tab), Assume 1.5% of the concrete volume is<br>steel reinforcement. Assume density of concrete is<br>2400kg/m <sup>3</sup> . Assume the density of reinforcement is<br>7850kg/m <sup>3</sup> . Concrete factor - Concrete>C32/40>0% (Using<br>CEM1) Steel factor - Steel>bar & rod = 1.35t Steel & 27.04t<br>Concrete |
| Culvert           | Dry valley<br>under A417                   | Culvert backfill                    | m <sup>3</sup> | 6.40     | Factor from Highways England Carbon tool: Bulk materials>fil, aggregate and sand>general mixture. Assume density of 2000kg/m <sup>3</sup>                                                                                                                                                                                                                                                               |
| Culvert           | Chambers                                   | 1000mm diameter, 1.2m - 3m<br>depth | No.            | 8.00     | As per call with Water engineer (29/10/19) assume two<br>chambers per culvert (=8) Factor from Highways England<br>Carbon tool: Drainage>Precast concrete inspection<br>chambers>1000mm diameter, 1.2m-3m depth                                                                                                                                                                                         |
| Attenuation ponds | Culverts                                   | Assume average of 4 culverts above  | No.            | 24.00    | As per call with Water engineer (29/10/19) assume culvert design is same as drawing in "drawings" tab. 2 per pond = 24.                                                                                                                                                                                                                                                                                 |
| Attenuation ponds | Chambers                                   | 1000mm diameter, 1.2m - 3m<br>depth | No.            | 48.00    | As per call with Water engineer (29/10/19) assume two<br>chambers per culvert (=48) Factor from Highways England<br>Carbon tool: Drainage>Precast concrete inspection<br>chambers>1000mm diameter, 1.2m-3m depth                                                                                                                                                                                        |
| Attenuation ponds | Geotextile<br>membrane                     |                                     | m <sup>2</sup> | 4,469.20 | As per call with Water engineer (29/10/19) assume 20% of attenuation ponds (by m <sup>2</sup> area) will require Geotextile membrane - 4.469.2m <sup>2</sup> Factor from Highways England                                                                                                                                                                                                               |

| Item<br>Category  | Location                                                                     | Description                                                                             | Units          | Quantity | Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                              |                                                                                         |                |          | Carbon tool: Earthworks>Geotextiles>Polypropylene<br>geotextile/matting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Attenuation ponds | HDPE<br>impermeable<br>layer                                                 |                                                                                         | m <sup>2</sup> | 4,469.20 | As above - HDPE density = 0.097t/m <sup>3</sup> Assume 2mm thickness = 89.38m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Attenuation ponds | Sand                                                                         |                                                                                         | m <sup>3</sup> | 670.35   | As per call with Water engineer (29/10/19) assume 20% of attenuation ponds (by $m^2$ area) require sand. 150mm depth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Attenuation ponds | Compacted clay                                                               |                                                                                         |                |          | Assume Site won soil - 0tOo2e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Line painting     | Traffic sings<br>and road<br>markings -<br>laying -<br>continuous<br>lines   | Thermoplastic road marking                                                              | m              | 28,071   | 1. Assume road marking paint is thermoplastic 2. Assume<br>the width of continuous road marking is 150mm (as per<br>Traffic signs manual>Chapter 5 road marking> table 4-5<br>edge of carriageway markings:<br>https://assets.publishing.service.gov.uk/government/upload<br>s/system/uploads/attachment_data/file/773421/traffic-signs-<br>manual-chapter-05.pdf ) 3. Assume the thickness of<br>thermoplastic marking is 2mm (as per<br>http://www.alharamain.com/prod01.htm) 4. Assume the<br>density of thermoplastic road marking is 2150 kg/m <sup>3</sup> (as per<br>Highways England carbon tool: Road pavement>road<br>marking>thermoplastic road marking) |
| Line painting     | Traffic sings<br>and road<br>markings -<br>laying -<br>intermittent<br>lines | Thermoplastic road marking                                                              | m              | 26,056   | 1. Assume the road marking paint is thermoplastic 2.<br>assume the length of road marking lines excludes blank<br>spaces between lines 3. Assume the width of intermittent<br>marking is 200mm 4. Assume the thickness of<br>thermoplastic marking is 2mm 5. Assume the density of<br>thermoplastic road marking is 2,150kg/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                          |
| Bridge            | Shab Hill<br>Junction<br>underbridge                                         | Steel-concrete composite -<br>Average value for composite<br>viaduct and girder bridges | m <sup>2</sup> | 2,883    | Bridge and underpass factors taken from Collings.D, An<br>environmental comparison of bridge forms. Proceedings of<br>the Institution of Civil Engineers; Bridge engineering 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Item<br>Category | Location                                         | Description                                                                                                                                                                     | Units          | Quantity | Assumptions                                                                                                                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bridge           | Cowley<br>overbridge                             | Steel-concrete composite -<br>Average value for composite<br>viaduct and girder bridges                                                                                         | m <sup>2</sup> | 544.5    | (2006)<br>Due to lack of design detail, a complexity factor was applied<br>through engagement with bridge engineers.                                                                                                                                                                                                                                                       |
| Bridge           | Stockwell overbridge                             | Steel-concrete composite -<br>Average value for composite<br>viaduct and girder bridges                                                                                         | m <sup>2</sup> | 544.5    |                                                                                                                                                                                                                                                                                                                                                                            |
| Underpass        | Bridge - Bat<br>underpass<br>east of Flyup       | Precast Reinforced Concrete Box<br>(I suggest we use the minimum<br>value for concrete viaduct bridges<br>as this is a relatively simple<br>structure – 1499kg/m <sup>2</sup> ) | m²             | 210      |                                                                                                                                                                                                                                                                                                                                                                            |
| Underpass        | Wingwalls -<br>Bat<br>underpass<br>east of Flyup |                                                                                                                                                                                 | m <sup>3</sup> | 48       | Assume 3x8m reinforced concrete and 0.5m thickness per<br>wing - 4 wings in total<br>Assume 1.5% of volume is steel, Assume density of<br>concrete is 2400kg/m <sup>3</sup> . Assume the density of<br>reinforcement is 7850kg/m <sup>3</sup> . Concrete factor -<br>Concrete>C32/40>0% (Using CEM1) Steel factor -<br>Steel>bar & rod = 5.652t Steel & 113.47t Concrete   |
| Underpass        | Bridge -<br>Grove Farm<br>underpass              | Precast Prestressed Concrete (I<br>suggest we use the average<br>value for concrete girder bridges<br>– 2457 kg/m <sup>2</sup> )                                                | m²             | 279      | As above                                                                                                                                                                                                                                                                                                                                                                   |
| Underpass        | Wingwalls -<br>Grove Farm<br>underpass           |                                                                                                                                                                                 | m <sup>3</sup> | 960      | Assume two lots of 20*30*0.75m and two lots of<br>10*4*0.75m. Reinforced concrete<br>Assume 1.5% of volume is steel, Assume density of<br>concrete is 2400kg/m <sup>3</sup> . Assume the density of<br>reinforcement is 7850kg/m <sup>3</sup> . Concrete factor -<br>Concrete>C32/40>0% (Using CEM1) Steel factor -<br>Steel>bar & rod = 113.04t Steel & 2269.44t Concrete |
| Bridge           | Bridge -<br>Cotswold Way<br>crossing             | Steel Box Girder (I suggest we use the average value for steel girder bridges – 2810kg/m <sup>2</sup> )                                                                         | m <sup>2</sup> | 570      | As above                                                                                                                                                                                                                                                                                                                                                                   |
| Bridge           | Bridge -<br>Gloucestershi                        | Steel-Concrete Composite (I suggest we use the average                                                                                                                          | m <sup>2</sup> | 2,520    | As above                                                                                                                                                                                                                                                                                                                                                                   |

| Item<br>Category                                      | Location               | Description                                                     | Units          | Quantity     | Assumptions                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------|------------------------|-----------------------------------------------------------------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | re Way<br>crossing     | value for composite girder bridges<br>– 2750kg/m <sup>2</sup> ) |                |              |                                                                                                                                                                                                                                                                                                                                  |
| Maintenanc<br>e                                       |                        |                                                                 | m <sup>2</sup> | 1,398,042.00 | Assume surface course is replaced once every 10 years = 233,007*6 = 1,398,042m <sup>2</sup>                                                                                                                                                                                                                                      |
| Bridge                                                | Transport of materials |                                                                 |                |              | Bridge-related emissions for A1-A3 equate to 46.35% of A1-A3 emissions. Transport emissions without bridges = $1,823.14 \text{ tCO}_2\text{e}$ . To estimate transport emissions relating to bridges assume adding 46.35% (845.03 tCO <sub>2</sub> e) onto transport total as an estimate of likely transport-related emissions. |
| A5<br>Earthworks<br>excavation                        | scheme-wide            |                                                                 | m <sup>3</sup> | 3,172,164.00 | Plant - Excavation Assumptions<br>Excavator Weight: 35 tonnes<br>Excavator Bucket Size: 1.85 m <sup>3</sup><br>Mins worked/hour: 50<br>Output based on cycle time loading vehicles: 186m <sup>3</sup> /hr<br>Fuel consumption Excavator: 35.6l/hr<br>CO <sub>2</sub> per litre of fuel: 3.782Kg                                  |
|                                                       |                        |                                                                 |                |              | Plant - Dumper/on site movement Assumptions<br>Weight: 22.5 tonnes<br>Dump capacity: 16.6m <sup>3</sup><br>Mins worked per hour: 50<br>Output based on cycle time moving earth: 186m <sup>3</sup> /hr<br>(assuming 2 dumpers)<br>Fuel consumption: 22.5l/hr<br>CO <sub>2</sub> per litre of fuel :2.97049kg                      |
| A5<br>Earthworks<br>movement<br>/transport on<br>site | scheme-wide            |                                                                 | m <sup>3</sup> | 3,106,219.00 | If excavator does 186m <sup>3</sup> /hr then it can fill a dumper 11X per<br>hour<br>One dumper filled every 5 mins<br>10 mins to transport each load, dump and return<br>Can shift 5 loads per hour<br>So assume 2 dumpers<br>working 50 mins per hour each                                                                     |

| Item<br>Category                                      | Location    | Description | Units          | Quantity  | Assumptions                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------|-------------|-------------|----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A5<br>Earthworks<br>transport of<br>excess<br>offsite | scheme-wide |             | m <sup>3</sup> | 86,099.00 | $\label{eq:starsport} \begin{array}{c} \underline{Transport\ off\ site\ Assumptions}} \\ Wagon\ size:\ 17\ m^3 \\ Transport\ distance:\ 20\ Km\ each\ way \\ CO_2e\ per\ tkm\ 100\%\ laden:\ 0.00011kg\ CO_2e/tkm \\ CO_2e\ per\ tkm\ 0\%\ laden:\ 0.00012kg\ CO_2e/tkm \\ Density\ factor\ for\ Earth:\ 1t/m^3 \end{array}$ |
| Land use changes                                      | scheme-wide |             | На             | 125.65    | 1. Pre and post construction habitat loss and gain provided<br>by GIS on 05 March 2021                                                                                                                                                                                                                                       |
|                                                       |             |             |                |           | get areas of land use/habitat types for Tewkesbury and<br>Cotswold                                                                                                                                                                                                                                                           |
|                                                       |             |             |                |           | 3. Emissions data relating to different land uses per local<br>authority was sourced from BEIS - UK local authority and<br>regional carbon dioxide emissions national statistics: 2005-<br>2018                                                                                                                              |
|                                                       |             |             |                |           | 4. land cover and emissions data were combined to give a tCO <sub>2</sub> e/ha per year figure for each broad land use type (woodland, grassland, pasture)                                                                                                                                                                   |
| Land use                                              | scheme-wide |             | На             | 111.70    | 5. These figures were applied to the pre and post<br>construction habitat loss and gain data to get total annual<br>changes for loss and gain, which were then multiplied by<br>60 years to cover the design life                                                                                                            |
| Treatment of waste                                    | scheme-wide |             | m <sup>3</sup> | 614.44    | Waste quantities taken from ES Chapter 10 Material assets<br>and waste (Table 10-16 Estimated waste arisings)                                                                                                                                                                                                                |